minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
↳ QTRS
↳ DependencyPairsProof
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
QUOT2(s1(x), s1(y)) -> QUOT2(minus2(x, y), s1(y))
PLUS2(s1(x), y) -> PLUS2(x, y)
MINUS2(minus2(x, y), z) -> PLUS2(y, z)
MINUS2(minus2(x, y), z) -> MINUS2(x, plus2(y, z))
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
QUOT2(s1(x), s1(y)) -> MINUS2(x, y)
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
QUOT2(s1(x), s1(y)) -> QUOT2(minus2(x, y), s1(y))
PLUS2(s1(x), y) -> PLUS2(x, y)
MINUS2(minus2(x, y), z) -> PLUS2(y, z)
MINUS2(minus2(x, y), z) -> MINUS2(x, plus2(y, z))
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
QUOT2(s1(x), s1(y)) -> MINUS2(x, y)
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
PLUS2(s1(x), y) -> PLUS2(x, y)
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS2(s1(x), y) -> PLUS2(x, y)
POL( s1(x1) ) = x1 + 1
POL( PLUS2(x1, x2) ) = 2x1 + 3x2 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
MINUS2(minus2(x, y), z) -> MINUS2(x, plus2(y, z))
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS2(minus2(x, y), z) -> MINUS2(x, plus2(y, z))
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
POL( s1(x1) ) = x1 + 1
POL( 0 ) = 0
POL( minus2(x1, x2) ) = 2x1 + 3x2 + 3
POL( MINUS2(x1, x2) ) = max{0, 2x1 + 3x2 - 1}
POL( plus2(x1, x2) ) = x1 + x2 + 1
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(0, y) -> y
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
QUOT2(s1(x), s1(y)) -> QUOT2(minus2(x, y), s1(y))
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT2(s1(x), s1(y)) -> QUOT2(minus2(x, y), s1(y))
POL( 0 ) = 1
POL( s1(x1) ) = x1 + 3
POL( minus2(x1, x2) ) = x1 + 1
POL( QUOT2(x1, x2) ) = max{0, 3x1 + 3x2 - 2}
POL( plus2(x1, x2) ) = 2x1 + 3x2
minus2(x, 0) -> x
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
minus2(s1(x), s1(y)) -> minus2(x, y)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))